MoTeC's LTC (Lambda To CAN) monitors, controls and diagnoses a Bosch LSU 4.9 Lambda sensor, transmitting Lambda readings on a CAN bus. When using multiple LTCs, up to 32 Lambda sensors can be configured on a single CAN bus for simultaneous monitoring by an ECU or logging device.

What is Lambda?

Lambda is a measure for the mass air to fuel ratio (AFR) present during combustion. When exactly enough fuel is combined with the available free oxygen, the mixture is chemically balanced and is called stoichiometric.

  • Lambda = 1 —stoichiometric mixture
  • Lambda < 1 —mixture is rich, excess fuel present
  • Lambda > 1 —mixture is lean, excess air present

The amount of air that is needed depends on the type of fuel used. In the case of gasoline/petrol, a stoichiometric mixture consists of an air to fuel ratio of 14.7 to 1. For different fuel, different ratios apply.

Narrowband Lambda

Narrowband Lambda is a measurement method where the AFR range is limited from 14:1 to 15.4:1. The sensor reading switches very sharply between the thresholds of lean and rich areas, providing a signal which indicates either a rich or a lean mixture but not to what degree.

This works well in controlling an engine for emissions, however, the limited range makes narrowband Lambda unsuitable for accurate tuning.

Wideband Lambda

Wideband Lambda sensors are designed to give an exact reading of Lambda. This is particularly useful when the precise mixture needs to be known in order to tune the engine for optimum power. The measuring range can span from 0.7 to 32 Lambda for a 5 wire sensor type.
Wideband Lambda sensors use sophisticated controls, as the temperature change needs to be taken into account to be accurate.
There are two concepts for measuring wideband Lambda:

4 Wire Wideband Lambda Sensor

This technology takes advantage of the fact that the sensor's voltage output is based on not only the oxygen differential between the exhaust pipe and atmosphere, but also on the temperature of the sensor itself. Sensor impedance varies with temperature, so not only the sensor voltage, but also the sensor impedance needs to be measured. Systems which do not use at least four wires typically have errors in displayed Lambda as high as 8 percent!

5 Wire Wideband Lambda Sensor

This newer technology determines the air fuel ratio of an engine by measuring Lambda sensor voltage output and the current required to hold the sensor voltage output constant. This method offers increased speed and accuracy over the older 4 wire sensor technology.

Tuning with Lambda

The tuning objective dictates the target Lambda. Typical gasoline/petrol engines produce

  • peak power at Lambda between 0.84 and 0.90
  • best economy at Lambda equal to 1.05
  • optimal emissions at Lambda slightly lower than 1

MoTeC ECUs allow for a Lambda goal table based on load and RPM.

Referencing the measured Lambda, the Quick Lambda function in the software adjusts the values in the fuel control table at the specified load and RPM site to achieve the goal Lambda.

Similarly, the Lambda Was function adjusts the values in the fuel control table using recorded Lambda measurements from a data log.

 

MoTeC's LTC (Lambda To CAN) monitors, controls and diagnoses a Bosch LSU 4.9 Lambda sensor, transmitting Lambda readings on a CAN bus. When using multiple LTCs, up to 32 Lambda sensors can be configured on a single CAN bus for simultaneous monitoring by an ECU or logging device.

COMPATIBILITY :

  • MoTeC ECU: M1 Series, M84, M400, M600, M800, M880
  • MoTeC Display/Loggers: All C Series Display Loggers, ACL, CDL3 (and discontinued models: SDL, SDL3, ADL, ADL2, ADL3)

PC COMMUNICATIONS :

A MoTeC gateway device is required to communicate with the LTC on CAN. Such devices include:

  • M1 Series ECUs
  • All C Series Display Loggers, ACL, ADL3, SDL3, CDL3
  • UTC (USB to CAN) #61059

SOFTWARE :

For multiple installations, LTC Manager software allows all units to be simultaneously managed and diagnosed.

The software is used to:

  • Configure and calibrate all units on the CAN bus
  • Display readings and diagnostics
  • Configure CAN transmission addresses
  • Control free air sensor calibration
  • Update unit firmware

CONFIGURATION :

MoTeC LTCs come pre-configured to suit a single LTC unit installation. By default, the initial factory sensor calibration is used and the CAN address is 460.

It is only necessary to use LTC Manager if installing multiple LTC units, or if changes to the default settings are required.

FEATURES :

  • Provides accurate Lambda measurement, even when exhaust gas temperature is changing rapidly (heating or cooling).
  • Calibrated by the user for a particular sensor using either the initial sensor factory calibration or the free air calibration.
  • Pre-configured to suit a single unit installation. If necessary, the configuration can be adjusted; see the Configuration section for more details.
  • Units marked with a 2 or higher under the barcode are able to transmit extended Lambda values (Rich Lambda).

BASIC SPECS :

Inputs/Outputs

  • 1 x Bosch LSU 4.9 Lambda sensor
  • Power supply voltage 11 V - 16 V
  • Power supply current 110 mA typical plus the sensor heater current. Heater current is typically 0.5 A - 1 A and up to 2 A on startup.

Communications

  • 1 x CAN - using LTC Manager, configurable to:

    125 Kbps, 250 Kbps, 500 Kbps or 1 Mbps

Physical

  • Dimensions: 38 x 26 x 14 mm, excluding wiring looms and connectors
  • Weight: 62 g
  • 1 x 4 pin male DTM connector (power/CAN)
  • 1 x mating connector for Bosch LSU 4.9 sensor
  • Maximum ambient temperature: 100 °C
Brand MoTeC
Man Part No MOT61300